
 Shantenu Jha

 SAGA: C Miceli, M Miceli, A Merzky S Sehgal, M Erdelyim, K Stamou

 DIC: Dan Katz (Univ of Chicago), Jon Weissman (Univ of Minnesota)

 http://saga.cct.lsu.edu

Developing Data-Intensive
Applications for Heterogeneous
Distributed Platforms

Outline

  The Case for Distributed DI Application

  Critical Perspective on Distributed Application Development

  IDEAS: First principles design objectives for Distributed App

  SAGA – Promoting IDEAS

  SAGA-based Applications
•  Four Applications

•  How IDEAS are met for these applications

•  Increasing in irregularity/structure

•  Understanding the landscape through examples

•  Aim: To show the kind of questions that need asking

Case for Developing Extensible DDIA

  Data inherently distributed
•  Distributed DIA, not just the simple sum of DIA concerns

  Multiple, Heterogeneous Infrastructure
•  Decouple Application Development from underlying infrastructure

•  Scale-out (and not just Scale-up)
•  Interoperation, e.g., concurrently cross Grid-Clouds

  Support Runtime or Application Characteristics for multiple
applications and different infrastructure
•  Support Multiple Programming Models

•  Master-Worker, but Irregular versus Regular Workload
•  Support Application-Level Patterns

•  MapReduce, File-based versus Stream-based
•  Support Distributed Affinities

Distributed Data Intensive Applications
Research Challenges

  Goal: Develop DDI scientific applications to utilize a broad
range of distributed systems, without vendor lock-in, or
disruption, yet with the flexibility and performance that
scientific applications demand.
•  Frameworks as possible solutions

  Frameworks address some primary challenges in developing
Distributed DI Applications
•  Coordination of distributed data & computing
•  Runtime (Dynamic) scheduling, placement
•  Fault-tolerance

  Many Challenges in developing such Frameworks:
•  What are the components? How are they coupled?

Functionality expressed/exposed? Coordination?
•  Layering, Ordering, Encapsulations of Components

Distributed Applications
Critical Perspectives

  Details at: http://grid2009.org/bestpaper

  Ability to develop simple, novel or effective distributed
applications lags behind other aspects of CI
•  Distributed CI: Is the whole > than the sum of the parts?

  Infrastructure capabilities (tools, programming systems) and
policy determine applications, type development & execution:
•  Proportion of App. that utilize multiple distributed sites sequentially,

concurrently or asynchronously is low
•  Not referring to tightly-coupled across multiple-sites

•  Focus on extending legacy, static execution models
•  Scale-Out of Simulations? Compute where the data is?

  What novel applications & science has Distributed CI fostered
•  Distinguish challenges of provisioning Distributed CI versus support

for application development

Critical Perspectives
Quick Analysis

  Several Factors responsible for perceived & actual lack of DA
•  Developing Distributed Applications is fundamentally hard!

•  Coordination across multiple distinct resources

•  Range of tools, prog. systems and environments large

•  Interoperability and extensibility become difficult

•  Commonly accepted abstractions not available

•  E.g. Pilot-Job powerful, but no “unifying” tool on TG

•  Deployment and execution capabilities disjoint from the
development concerns/process

•  Generally good idea, but application development often
influences where and how it can be deployed/executed

Understanding Distributed Applications
IDEAS: First Principles Development Objectives

  Interoperability: Ability to work across multiple distributed
resources

  Distributed Scale-Out: The ability to utilize multiple distributed
resources concurrently

  Extensibility: Support new patterns/abstractions, different
programming systems, functionality & Infrastructure

  Adaptivity: Response to fluctuations in dynamic resource and
availability of dynamic data

  Simplicity: Accommodate above distributed concerns at
different levels easily…

 Challenge: How to develop DA effectively and efficiently with
the above as first-class objectives?

Interoperabilty: Motivation

Slide adapted: Grossman

Decouple from vertical stack
Decouple from details of resource provisioning
Couple horizontal stacks

SAGA: In a nutshell

  There exists a lack of Programmatic approaches that:
•  Provide general-purpose, basic &common grid functionality for

applications and thus hide underlying complexity, varying
semantics..

•  The building blocks upon which to construct “consistent” higher-
levels of functionality and abstractions

•  Meets the need for a Broad Spectrum of Application:
•  Simple scripts, Gateways, Smart Applications and Production

Grade Tooling, Workflow…

  Simple, integrated, stable, uniform and high-level interface
•  Simple and Stable: 80:20 restricted scope and Standard
•  Integrated: Similar semantics & style across
•  Uniform: Same interface for different distributed systems

  SAGA: Provides Application* developers with units required to
compose high-level functionality across (distinct) distributed
systems
 (*) One Person’s Application is another Person’s Tool

SAGA: In a thousand words..

SAGA C++ quick tour

  Open Source - released under the Boost Software License 1.0

  Implemented as a set of libraries
•  SAGA Core - A light-weight engine / runtime that dispatches calls

from the API to the appropriate middle-ware adaptors

•  SAGA functional packages - Groups of API calls for: jobs, files, service
discovery, advert services, RPC, replicas, CPR, ... (extensible)

•  SAGA language wrappers - Thin Python and C layers on top of the
native C++ API

•  SAGA middleware adaptors - Take care of the API call execution on
the middleware

  Can be configured / packaged to suit your individual needs!

SAGA Implementation: Extensibility

  Horizontal Extensibility – API Packages
•  Current packages:

•  file management, job management, remote procedure
calls, replica management, data streaming

•  Steering, information services, checkpoint…

  Vertical Extensibility – Middleware Bindings
•  Different adaptors for different middleware

•  Set of ‘local’ adaptors

  Extensibility for Optimization and Features
•  Bulk optimization, modular design

SAGA: Available Adaptors

  Job Adaptors
•  Fork (localhost), SSH, Condor, Globus GRAM2, OMII GridSAM,

Amazon EC2, Platform LSF

  File Adaptors
•  Local FS, Globus GridFTP, Hadoop Distributed Filesystem (HDFS),

CloudStore KFS, OpenCloud Sector-Sphere

  Replica Adaptors
•  PostgreSQL/SQLite3, Globus RLS

  Advert Adaptors
•  PostgreSQL/SQLite3, Hadoop H-Base, Hypertable

SAGA and Distributed Applications

SAGA-based frameworks:
Logical ordering

SAGA-based Applications: Examples

  SAGA NxM Framework (All-Pairs)
•  Compute Matrix Elements, each is a Task

•  All-to-All Sequence comparison
•  Control the distribution of Tasks and Data
•  Data-locality optimization via external (runtime) module

  SAGA MapReduce Framework:
•  Control the distribution of Tasks (workers)
•  Master-Worker: File-Based &/or Stream-Based
•  Data-locality optimization using SAGA’s replica API

  SAGA-based Sphere (Stream based processing)

  SAGA-based DAG Execution
•  Extend to support Load-balancing and dynamic decision/placement & scheduling

  Applications ordered from more to less regular
•  All-Pairs very structured C, D
•  DAG-based applications can be very irregular

SAGA-based All-Pairs

  We use a SAGA-based All-Pairs abstraction
•  Applies an operation on the input data-set such that every

possible pair in the set is input to the operation
•  Degrees of freedom: Data assignment, Distribution

  Our application compares ‘genome’ (files) that consist of
random combinations of ACGT
•  Other Examples: AP for Image Similarity (Biometrics) [D Thain]

  The application spawns (distributed) jobs to run sets of these
pairs
•  Determining which pairs to put into a set, and on which

distributed resource to run that set
•  Data distribution vs. computation

•  Data distribution/transfer times relevant

SAGA-based All-Pairs
Multiple-levels of “control”

  Initial Data Condition:
•  Data maybe distributed across resources, possibly localized

  Work Decomposition:
•  Granularity of work-load,

•  8x8 matrix (=64 matrix elements): workload unit 4? 16? 64?

•  Workload to worker mapping

•  For a fixed data set size, this is equal to number of workers

•  Worker placement

•  All local? All distributed?

•  I/O saturation? Compute-bound? Network effects?

  Stage at which workload to workers binding takes place

DDIA: Some questions
SAGA-based All-Pairs

  We want to understand:
•  Performance sensitivity to data decomposition, workload granularity and

distribution
•  Which infrastructure to use, for specific problem (data access patterns), or in

general for a given application?
•  Performance tradeoffs of a DFS compared to “regular” distribution
•  Examine sensitivity to placement techniques

  Why DFS?
•  Abstract layer between application and local file systems

•  Simplified Handling Data
•  Handles data distribution (management)
•  Provides replication and other capabilities

•  Some examples include
•  HDFS – Hadoop’s filesystem, GFS
•  CloudStore an open-source high performance DFS based on Google's

distributed filesystem GFS.
•  Common to load DFS as part of VM/Image
•  Multiple (Open-Source) now available; generally more reliable now

To DFS, or not to DFS?

  Pros
•  Handles data distribution (management)
•  Provides Replication
•  Fault tolerance
•  Capability to handle data dependencies

  Cons
•  Overhead
•  Inability to control work placement
•  They all work differently. Not easy to understand performance!

  Performance:
•  Performance advantage of a DFS? What constraints?
•  Customize a DFS for further performance advantage?

Distributed Data – Base Line tests

  Workload: 2.3GB

  Each file 287MB, thus 8x8
matrix.

  Configurations:
•  C1 = Local
•  C2 = C on R1; D on R2
•  C3 = C on R1, R2; D on R1,R2

  Time curves down, as Nw up

  Adding workers eventually
becomes ineffective
•  Coordination costs dominate

  Accessing Remote data is
expensive

Distributed Model (Intelligent)

  Workload 2.3GB

  Each file 287MB; thus 8x8 matrix

  Configurations:
•  C4 = C3 + Intelligence

  Very simple Intelligence: assign
tasks upon lowest transfer time

  Intelligence Overhead negligible
•  Implementing Intelligence ~1%

time

  Different file sizes
•  Scales similarly

  Scale out to > 2 resources (4)

0

200

400

600

800

1000

1200

1400

2 4 8
Ti

m
e

 (
se

c
o

nd
s)

Number of Workers

Conventional and Intelligent

Intelligent Mode

Conventional Mode

Objective: Intelligent Compute-Data
Placement

  Objective: Intelligence in Compute-Data placement

  Strategies:
•  Assignment of workers (statically) determined by lowest Ttransfer

•  Simple network measures (ping, throughput etc.) for Ttransfer

•  Data pre-staging

•  Load-balancing (where easy to predict data requirement)

•  Assignment of workers , by minimizing data amount transferred

•  Placement of workers, based upon tracked dependencies

 For a given objective, which strategy? Each strategy could
have different mechanism used to implement…

Results: DFS (CloudStore)

  Read 2.3 gigabytes

  No coordination

  Handled multiple
requests

  Some overhead for
multiple dataservers
in filesystem

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4

Ti
m

e
 (

se
c

o
nd

s)

Number of Workers

CloudStore Distributed Filesystem

Local Distributed
Filesystem

2 Dataservers (r = 2)

2 Dataservers (r = 1)

Remote Filesystem

SAGA-based frameworks:
Logical ordering

SAGA-MapReduce
(GSOC’08 Miceli, Jha et al CCGrid’09; Merzky, Jha GPC’09)

•  Interoperability: Use multiple infrastructure concurrently
•  Control the NW placement

•  Dynamic resource Allocation: “Map” phase different from “Reduce”
•  Distribution of data

Ts: Time-to-solution, including data-
staging for SAGA-MapReduce
(simple file-based mechanism)

SAGA-MapReduce
(GSOC’08 Miceli, Jha et al CCGrid’09; Merzky, Jha GPC’09)

 Controlling Relative Compute-Data Placement

Enhanced SAGA-MapReduce
(Erdelyim, Sehgal, Merzky, Jha GSoC’09 Project)

 Ease-of-use:
•  Simple, clean C++ API
•  Application only needs to link to a library

•  Custom input/output format support
•  Text-based and sequence file formats are already built-in

 Feature highlights:
•  Infrastructure-independent support for the

MapReduce programming model

•  Native C++ library, no need to use wrappers like in
case of Hadoop

•  Chaining of MapReduce jobs

Enhanced SAGA-MapReduce
(GSOC’08 Miceli, Jha et al CCGrid’09; Merzky, Jha GPC’09)

  Implementation details:
•  Efficient serialization support via Google's Protocol

Buffers library
•  Trivial to extend Hadoop’s librecordio or Thrift

•  Data-locality optimization with the help of SAGA's
Replica API (soon)

•  Master-worker communication done through
SAGA's Advert and Streams API

Sphere PM: Stream Processing

  Sphere – Generalized MapReduce
•  Tied closely with Sector

  Kernel – A (UDF) function that processes a single
independent segment (file) in the stream

  Kernels execute in parallel to process the entire stream
encompassing the data set

  Sphere supports the stream processing paradigm, allowing
applications to:
•  Define a “kernel” function in a dynamic library (DLL)

•  Upload a stream of data to the Sector file system for processing

Integrating SAGA Sphere

  Support for stream processing is provided through two
adaptors: Sector and Sphere

  SAGA Sector file API can be used to:
•  Upload data sets to the Sector file system
•  Upload kernel functions wrapped in UDFs to Sphere
•  Download result sets to local disk after processing

  SAGA Sphere job API can be used to:
•  Execute kernel functions on uploaded data sets
•  Receive metrics on job completion times

  Authentication with the Sphere/Sector system is done
implicitly.
•  Static and Dynamic authentication parameters are supported

Sector

  Sector – Data storage cloud designed for high speed
networks

  Currently running on OCC test-bed that utilizes 10g/s WANs

  SAGA Sector adaptor translates SAGA File Package APIs
into Sector operations

  Allows SAGA based applications to utilize the high
performance OCC test-bed for data-intensive
computations in conjunction with other DFS’s like KFS, HDFS,
GFS etc.

SAGA-Sphere WC
Sector FS

Dynamic Execution of DAGs

  Problem: Given a set of resources, where to schedule a set
of independent/dependent DAG nodes?

  Goal: Decrease the makespan of the DAG i.e. Execution
time

  To increase performance – data and compute placement
must be taken into consideration

  Current scheduling heuristic based on:
•  Priority Assignment

•  Dynamic resource selection

Digedag: SAGA Workflow Package

  Digedag - prototype implementation of an experimental
SAGA-based workflow package, with:
•  An API for programmatically expressing workflows
•  A parser for (abstract or concrete) workflow descriptions
•  An (in-time workflow) planner
•  A workflow enactor (using the SAGA engine)

  Use of an integrated API that allows the specification of the
node and data dependencies to be specified & removes the
need to manual (explicitly) build DAGs

  Can accept mDAG output, or Pegasus output
•  C-DAG output of digedag is general purpose, and can be used

most simply without favour to say DAGman

  Move back and forth between A & C-DAG;

SAGA-based DAG Execution
Preserving Performance

Dynamic Execution of DAG

  Communication Overhead:
•  Use netperf UNIX tool to estimate data transfer rates between a set

of resources.
•  Use this data to assign weight to DAG edges

  Priority assignments:
•  Higher priority assigned to nodes that contribute most to the

communication overhead
•  Example: Parent node of the DAG CP has the highest priority

  Dynamic resource Selection:
•  Min { Cost (nx, ry) = tlevel(nx) + blevel(nx) }

 nx, node under consideration
 ry, resource from a set of given resources

 tlevel (nx) , the heaviest top-level path for node nx placed on ry
 blevel(nx), the heaviest bottom-level path for node nx placed on ry

Ensemble Kalman Filters
Heterogeneous Sub-Tasks

  Ensemble Kalman filters (EnKF), are recursive filters to handle
large, noisy data; use the EnKF for history matching and
reservoir characterization (Alan Sill gave a nice overview in
the last MAGIC talk)

  EnKF is a particularly interesting case of irregular, hard-to-
predict run time characteristics:

Results: Scale-Out Performance

  Using more machines
decreases the TTC and
variation between
experiments

  Using BQP decreases the
TTC & variation between
experiments further

  Lowest time to completion
achieved when using BQP
and all available resources

Khamra & Jha, GMAC,
ICAC’09

40

•  History match on a 1
million grid cell problem,
with a thousands of
ensemble members

•  The entire system will
have a few billion
degrees of freedom

•  This will increase the
need for scale-out,
autonomy, fault
tolerance, self healing
etc...

Extreme Distribution: Frameworks?

41

•  History match on a 1
million grid cell problem,
with a thousand
ensemble members

•  The entire system will
have a few billion
degrees of freedom

•  This will increase the
need for scale-out,
autonomy, fault
tolerance, self healing
etc...

Extreme Distribution: Frameworks?

42

•  History match on a 1
million grid cell problem,
with a thousand
ensemble members

•  The entire system will
have a few billion
degrees of freedom

•  This will increase the
need for scale-out,
autonomy, fault-
tolerance, self healing
etc...

Extreme Distribution: Frameworks?

Does SAGA Provide A Fresh Perspective?

Conclusions

  Discussed SAGA-based approaches to developing and
executing distributed DIA

  Range of infrastructure & dynamic behaviour is large –
intrinsic (application) and extrinsic (system/resource)
•  Responding can have important performance consequences

  Proposed a logical ordering for designing/developing
Frameworks
•  Provides the basis with which to perform experiments to

understand performance trade-offs, configurations,
infrastructure for a broad range of applications

•  Designing and Implementing such frameworks that support
IDEAS is a challenging endeavour

SAGA Team and DPA Team and the UK-EPSRC (UK EPSRC: DPA, OMII-UK ,
OMII-UK PAL), NSF (HPCOPS, Cybertools) and LA-BOR

People:

SAGA D&D: Hartmut Kaiser, Ole Weidner, Andre Merzky, Joohyun Kim,
Lukasz Lacinski, JoãoAbecasis, Chris Miceli, Bety Rodriguez-Milla

SAGA Users: Andre Luckow, Yaakoub el-Khamra, Kate Stamou, Cybertools
(AbhinavThota, Jeff, N. Kim), OwainKenway

Google SoC: Michael Miceli, Saurabh Sehgal, MiklosErdelyi

Collaborators and Contributors: Steve Fisher & Group, Sylvain Renaud
(JSAGA), Go Iwai & Yoshiyuki Watase (KEK)

DPA: Dan Katz, Murray Cole, Manish Parashar, Omer Rana, Jon Weissman

DIC: Dan Katz and Jon Weissman

Acknowledgements

